家用中央空调系统设计-家用中央空调系统设计规范
1、普通空调:一般是一对一的,如一台室外机对应一台室内机,还有立式空调,窗式空调。一般适合空间较小的环境。
2、中央空调:又名户式中央空调,是一个小型化的独立空调系统,在制冷方式、基本构造上与大型中央空调类似,由一台主机通过风管或冷热水管连接多个末端出风口将冷、暖气送到不同区域,以实现多个房间温度调节、改善室内空气品质以及预防空调病发生的目的。
那在消费者的选购与使用上,普通家用空调与家用中央空调又有什么区别呢?
1、系统构成
普通家用空调通常是一拖一:一个室外机对应一个室内机。而家用中央空调可以做到一拖多:一个室外机可以连接多个室内机。
2、使用效果
A、普通家用空调相对而言制冷速度较慢,一般需要10分钟以上,温度波动大(±2℃),有时会出现忽冷忽热的现象;若长时间使用没有新风设计的空调,室内空气品质会较差。
B、家用中央空调则制冷快,比家用机快1倍左右,5-6分钟就能达到设定温度。同时,室内送风温差小、风量大,室内湿度分布均匀,温度变化小(±0.5℃),无空调角;并且新风引进方便,相对温度控制在40%-70%之间,空气特别舒适清新。
3、美观性
A、普通分体式家用空调室内机外观都非常类似,白色长方形的机壳多少有点呆板。
B、家用中央空调则不一样,使用环境的多样性决定了家用中央空调室内机款式的多样性,用户可根据自己的需求任意选择不同款式的室内机,如柜机、嵌入机、吊顶机、风管机、导管暗藏式等。
4、初投资
A、以120㎡的三房两厅居室来估算,装载普通家用空调大概需要5台空调:分别是客厅1台3匹柜机,餐厅1台1.5匹挂机,主卧室1台1.5匹 挂机,两个小卧室分别安装1台小一匹挂机。若以普通定频空调算,总价大约在2万元~2.5万元;而用变频空调的话,价格大约在2.5万元~3万元。
B、安装家用中央空调则大约需要3万元的初期投资,若使用数码机等较为省电的机型,价格还要再贵一些,但平均造价与家用分体节能机型相差不大。
5、总耗电量
A、普通定频空调功耗在8KW左右,而较为省电的变频机型则在6.5KW左右;
B、家用中央空调方面,使用较为省电的数码机型大约功耗5.5KW,因此对于多房间住宅,家用中央空调一般比家用空调省电30%左右,长远使用成本要比普通分体空调更少。
C、使用分体+柜机的传统布局布置空调,初投资相对省钱,安装也很方便,保修期长。而家用中央空调的初期投资比家用分体空调略高,但眼下有能力购买多台家用机的消费群体正在逐步转换消费观念,毕竟多台家用分体空调的购买价格和家用中央空调的差距已经越来越小,消费者更乐于追求中央空调所带来的美观、舒适。
购买建议:
房间数量少的家庭(安装1-4台以内的家庭)、居住人数少或者室内装修属一般(无天花)的装修,追求初期投资少的用户建议考虑分体机+柜机的安装布局;而房间数量多或者装修豪华,对舒适性要求较高的用户建议考虑安装家用中央空调,住宅房间数量越多,居住人数越多,使用家用中央空调越能体现产品的性价比。
中央空调系统设计方案
根据冷量 看你水进出水温差是多少 一般进水7度出水12度 然后根据传热公式 就可以算出水流量了··设计需考虑到富裕量 然后根据流量 就可以确定管径了 至于什么管阻啊之类的 工作压力啊之类的 这都和组合空调 冷水机组 水泵选择有关 这其中你还需要考虑水力平衡 也就是说因为有时候空调机组用水量是有大有小的 流量也就在不断变化 这对水泵和冷水机组的工作运转不利 你可以考虑用到压差旁通阀或者平衡阀 或者选用变频电机 让水泵处在最佳工作点· 反正吧 水设计和风设计差不多
有把家用中央空调和新风系统组合在一起的设计吗
办公楼小型中央空调设计方案 2008-7-21 大 中 小打印 一、工程概述 本工程为威帆科技公司办公室中央空调系统。该办公室总建筑面积约为306m2,空调使用面积约为285m2.为了营造一个舒适、温馨、高质量、高品质、高品位的工作空间,给该建筑选择一套最实用、最完善、能将空气 气品质处理到最佳状态,使处于其中的人有身处大自然之清新感觉的空调系统,本着严谨、认真、诚恳的专业态度,根据建筑的使用情况,综合考虑业主的需要,参照业主的具体要求,依据国家暖通设计规范,进行了如下环保性、舒适性、实用性空调系统设计。 二、设计说明 1.设计原则: 我们主要依据国家规范、行业标准、品牌品质、舒适环保、经济实用、高效可靠、豪华美观、操作简便、维护便利的原则,提供本空调方案。 2.设计依据: (1)《户用和类似用途冷水热泵机组》国家标准(GB/T18430.2-200119-87) (2)《采暖通风与空气调节设计手册》(GB19-87) (3)《家用中央空调实用技术手册》(交通出版社) (4) 空气调节的四度:温度、湿度、洁净度和风速 3.设计参数: (1)室外气象参数: 冬季: 采暖(干球)温度 -5℃ 通风(干球)温度 -1℃ 空调(干球)温度 -7℃ 室外计算相对湿度 60% 平均风速 3.4m/s 最多风向及其频率 N 11% 极端最低温度 -17.9℃ 夏季: 通风(干球)温度 32℃ 空调(干球)温度 35.6℃ 室外计算相对湿度 76% 平均风速 2.6m/s 最多风向及其频率 S 11% 极端最高温度 43℃ (2)空调室内设计参数 三、空调方案选择 1.空调系统的选择: 1)家用中央家调系统的分类及比较选择 a)风管机 机组新风供给和冬季加湿较容易实现,初投资小,但室内机和风管占用一定的空间,对层高也有要求,且为一开全开式,各空调房间不能单独控制温度。 b)水冷机 各空调房间能够单独控制,运行费用低,不占用空间,各房间能单独控制,合适性较高,室内噪声低;但水系统较杂,初投资中等; c)VRV空调机组 运行费用小,占用空间小,室内噪声低,但安装要求高,需专业安装,若发生制冷剂渗漏,检漏较困难,且渗漏到相当浓度,会对人体造成危害。 分析该办公室平面图,单独控制的区域较多,再经过以上比较选择,选用风冷热泵机组加风机盘管为最佳选择。 2)为了保证向用户提供一个安全、舒适、高效、和谐的工作环境,家用中央空调应满足以下技术要求: a)冬夏能兼顾使用,冬季能制热,夏季能制冷; b)健康卫生、舒适性要好; c)效率高、节能效果好; d)自动控制要求高,操作要简捷; e)安全性要好,发生事故的破坏性要小 f)安装、维护要方便; g)使用寿命长 h)环境保护 综合考虑以上要求,选用开利“雅居易”风冷热泵机组,该机组具体相应的特点为: a)该机组是为寒冷地区度身定制热量差额管理功能的“全天候”风冷热泵机组,运行范围为-10℃至+46℃;板式蒸发器及内置水力模块均配有防冻电加热器,可有效保护机组在低达-10℃的气温条件下水路不发生冻结。 b)机组本身为水系统,在创造舒适环境的同时,由于机组为非变频空调,没有电磁辐射,不会干扰家用电器的使用,更不会对用户的身体造成损伤; c)机组充分利用HFC-407C非共沸特性的逆流式钎焊板式换热器等,效率高,实现全年候的能量节省; d)采用专为小型风冷热泵机组优化设计的PRO-DIGLOY微电脑控制系统,用户界面友好,将简单快捷的操作与先进复杂的中央空调控制理念完美结合; e)独特的制冷回路设计:只有一只膨胀阀,采用焊接联接,消除传统设计中各种潜在泄漏点,确保机组使用寿命内不用补充价格不菲的制冷剂; f)一体化的水系统能快速地安装,包括了所有系统必要水力组件:可拆卸的视镜 过滤器、高扬程的水泵、膨胀水箱、流量开关、安全阀、压力表、放气阀,以及用于 整定水流量的节流阀等。真正做到安装简便,轻松搞定。 g)机身外壳及热交换翅片都经过防腐蚀处理,特别适用于沿海及工业城市等空气湿度高、含盐高的地区,有效运行寿命更是高达15年。 h)采用环保制冷剂HFC-407C,不会对臭氧层造成破坏。开利对该冷媒进行了多年的测试,其具有和R-22同样的安全及可靠性,结合独到的制冷剂环路设计,其性能还可优于使用R-22的机组。 2.风机盘管的选型:注:1. 该建筑位于中部地区,故选用中央空调风冷热泵机组,电辅加热器为可选配件,若选用可以更好的达到制热效果,若不选用也可达到较好的制热效果; 2. 空调使用面积为285㎡,家用中 热泵机组,电辅加热器为可选配件,若选用可以更好的达到制热效果,若不选用也可达到较好的制热效果; 2. 空调使用面积为285㎡,家用中央空调机组30RH033标准规定空调使用面积为270-340㎡,故选用两台300RH033能符合家用中央空调机组的选型要求; 3. 未端设备以配置42CM10-13台为标准,目前配置10台,本工程选用一个电磁阀安装在不经常使用且风机盘管规格大的会议室。 四、空调系统优点 1、每个空调场所的送回风系统形成一个空气循环,气流组织好,室内温度分布均匀;利用高质量开关,房间温度控制精确,可以满足不同场所的各种空调要求; 2、该空调系统采用水系统,送回风温差小,避免了夏季直接蒸发式空调的“强冷风感”及冬季集中供暖的“燥热感”; 3、系统室内机暗装于吊顶内,免去了擦洗及维护的麻烦,有效的回风过滤系统延长了空调的寿命,也减少了后期的维护维修费用;而普通空调裸露于空调场所,灰尘等的不断污染,使空调外观发黄,并很大成度地缩短了空调的使用寿命。一般情况下,普通空调的使用寿命在5-8年,中央空调的使用寿命在15-20年。
中央空调变频控制系统设计及应用要怎么设计啊?
随着生活水平不断提高,人们对室内生活体验的要求和对室内的舒适性、空气品质的要求越来越高,促进了家用中央空调和新风系统的兴盛。实践证明,把中央空调和新风系统设计在一起是可行的。
许多人都在纠结于是否同时安装中央空调和新的风力系统。原因有三:一是预算不够;二是对中央空调和新风系统的认知盲区;第三,住的地方没有雾霾。
关于预算。如果是预算不够,就算了吧,可以不考虑同时装,毕竟客观不能。
关于认知误区。
中央空调的“新风功能”是什么?它与新风系统的区别在于,中央空调的“新风功能”,注重的只是功能,而不是主要功能,空调的主要功能是调节温度。新鲜空气对其“功能”是通过室外的空气入口,烟气,再经过粗线过滤后,室内空气的冷却或加热,回风口被吸回室内空气污染。
新风系统通过新风机组、新风风管和风口,室外空气进入室内,然后通过空气出口,排气管和风扇将室内空气排出室外。简单地说,新的风系统就是将陈旧的室内空气排出,引入室外的新鲜空气来实现室内和室外的空气流通。注重室内和室外的空气流通!
听起来都差不多,但中央空调室内室外空气在加压过程中,当室内压力等于或高于室外,在房间里和空调之间形成一个闭环系统,无法实现室内外空气交换的目的。
较短、新鲜的空气系统与中央空调的“功能”相比,最大的优点是将污浊的空气排到室外,空气滤清器中的烟气更详细、更可靠。
如果没有雾霾,新的风系统就不会那么热,新的风系统可以通过屏幕过滤PM2.5和其他细颗粒物,以确保室内空气的安全。也许有些人安装新风的原因是为了去除甲醛,新的风力发电系统几乎不可能清除甲醛但是去去雾霾还是很简单的。
综上所述:如果条件允许,还是同时安装新风系统和中央空调比较好
1 当前空调系统设计中的节能措施
1.1 采用楼宇设备自动控制技术对空调末端装置进行控制 在智能建筑中通常采用楼宇设备自控系统,对中央空调系统末端的新风机、回风机、变风量风机、风机盘管等装置进行状态监视和使用的“精细化”控制,以实现节能 的目的。它通过DDC(直接数字控制器)控制器,将检测的相关量值进行PID(比例、积分、微分)运算,实现对上述设备的PID控制,达到一定的节能效 果。这种对空调末端设备的控制可节能10%-15%,因为不能实现对空调制冷站及空调水系统的智能控制,因此,节能效果不显著。这种节能控制技术的典型代 表产品和生产厂商有: (1)美国霍尼韦尔公司EXCEL 5000楼宇设备自控系统; (2)美国Johnson公司的楼宇自动化系统; (3)德国西门子公司S600顶峰系统等。 空调末端设备的控制采用楼宇自动化系统 (BAS),这些设备的主要特性均实现了对空调末端设备的节能自动控制,并为动态变流量空调节能控制系统的运行创造了更为良好的外部条件。 1.2 采用通用变频器对中央空调系统中的水泵和风机进行控制 为 降低中央空调系统的能源浪费,宜采用通用变频器来控制空调系统的水泵和风机,通过对供、回水压差或温差的采集,对水泵和风机进行PID调节,以达到节能效 果。这种控制方法通常可以节约水泵和风机等电机拖动系统的电能约20%,最高可达30%。这种节能控制技术的生产厂商和典型代表产品有: (1)美国AB(Allen Bradley)公司,代表产品有通用变频器1336PLUSII系列产品; (2)法国施耐德电气(SchneiderElectric)公司,代表产品有Ahivar 38系列异步电动机变频器; (3)德国西门子(SIEMENS)公司,代表产品有通用变频器MICROMASTER440系列产品。2 动态变流量空调节能控制系统 2.1 动态变流量控制原理 当空调负荷发生变化时,通过采集一组参数值(如下图所示)经模糊运算,及时调节冷水机组、各水泵和冷却塔风机的运行工作参数,从而改变冷水机组工作状态、冷冻 (温)水和冷却水流量,改变冷却塔风机的风量,确保冷水机组始终工作在效率最佳状态,使供回水温度始终处于设定值,从而使主机始终处于高转换效率的最佳运行工况。 动态变流量控制的核心是变流量控制器,在控制器中建立了知识库、模糊控制模型和模糊运算规则,形成智能模糊控制。通过采集影响冷水机组运行的各种参数,经模 糊运算,得出相应的控制参数,这些控制参数被送到冷水机组、冷冻(温)水控制子系统、冷却水控制子系统、冷却塔风机控制子系统。这些子系统根据控制参数的 变化,利用现代变频控制技术,改变空调系统循环水的流量和温度,以保证整个系统在满负荷和部分负荷情况下,均处于最佳工作状态,从而最终达到综合节能的目 的。 2.2 动态变流量节能控制方法 2.2.1 变流量冷却水泵系统 当末端空调负荷减少时,反映到冷水机组将出现冷却水出水温度降低的现向,温度传感器检测出这种变化趋势后,模糊控制系统将自动降低冷却水泵的工作频率,降低冷却水进水流量,提高冷却水出水温度,并使进、出水温差控制在最佳设定值上,维持冷水机组的高效率运行。 2.2.2 一次泵变流量系统 当末端空调负荷变小时,末端空调设备前的两通阀将会关闭或减小,负荷侧回路管路的阻力增大,冷冻水供、回水温差将出现减小,供回水管的压差将出现增高的趋 势。水温传感器及水流压差器检测出这种趋势后,模糊控制系统将自动降低冷冻水泵的工作频率,减少冷冻水流量,并使供回水温差及供回水压差控制在最佳设定值 上,维持冷水机组的高效率运行。 2.2.3 .二次泵变流量设计 二次泵变流量系统分为一级泵变 流量系统和二级泵变流量系统。其控制原理及效果与一次泵变流量大致相同(在这里不再一一赘述)。而一级泵系统负责确保冷水机组的安全运行,一级泵系统的旁 通管路一般设计为直通管,管径按一台冷水机组额定流量设计。一次泵变流量系统跟踪二级泵环路的流量变化,并保证一级泵环路的流量大于二级泵环路的流量,使 旁通冷冻水管保持从供水管流向回水总管。当旁通管的流量超出设定值的范围时,变流量控制器将模糊PID调节一级泵的工作频率,使旁通管的流量返回设定值。3 动态变流量节能控制系统与目前通用变频器控制系统的区别 3.1 控制原理不同 通用变频器控制是采用通用变频器对受控的水泵电机、风机电机进行单独的控制。当其控制系统检测到某一受控量值时,就按这个量值与给定值之间的误差进行比例 (P)、积分(1)和微分(D)之间的线性组合进行控制,即PID控制。这种控制方法只适合于线性系统中,并对单一控制对象实施控制。 动态变流量 节能控制系统是采用模糊控制技术与变频技术相结合的控制原理,虽然也使用了通用变频器(VVVF),但它不是采用PID控制方式,而是采用模糊控制方法。 也就是在整个系统控制过程中,以语言描述人类知识,并把它表示成模糊规则或关系,通过推理、利用知识库,把某些知识与过程状态结合起来的控制行为。它并不 具有明显的PID结构,但也可以称为非线性PID控制器,它是根据系统的误差信号和误差的微分或差分来决定控制器的参数,尤其适合非线性和时变性的被控对 象。 3.2 控制方法的不同 中央空调系统的受控参数受季节变化、环境变化、使用时间、人流量等多种因素的综合影响,是一个随机变量,而不是一个线性系统,只是一个非线性系统。因此,决定中央空调系统冷冻(温)水流量和温度、冷却水流量和温度的需求量也是一个随机变量。 通用变频器所采用的最重要的控制参数,如比例系数K、积分时间常数T1和微分时间常数Td都是使用经验数据或试验数据确定的,一旦选定就不能自动调节。因 此,PID控制系统只适合于线性系统,对于非线性系统不可能达到最佳控制,即选用比例系数和时间常数后,采用同一种控制方法对付各种不同的负荷状态,效果 当然是不理想的。 模糊控制系统本来就不要求准确掌握受控量的数值,但是它已经考虑了受控量的各种可能性,跟踪受控参数的变化,始终使被控系统处于最佳运行状态,对于各种非线性系统和时变性系统都能提供最佳的决策。 3.3 控制效果的不同 通用变频器用PID控制方法,控制非线性系统时,很容易引起中央空调系统的强烈振荡,使控制范围在较大范围内波动,增加了系统的能耗,也很容易使系统长时间 都不能达到给定值的稳定状态,控制效果不理想,对于主机所配套的冷冻水泵和冷却水泵以及冷却塔风机等设备的节能最多在20%-30%之间。因其采取了保障 冷水机组工作状态的措施,不可能节约燃料和主机电能。当然,也不能实现资源共享和无人值守管理。 而动态变流量节能控制系统由于建立了优化模糊控制 模型,对于中央空调系统可能出现的问题都给出充分的估计,因此,在计算中存储的总决策表能提供最佳的控制方案,系统稳定性好,极少出现振荡现象,系统很快 就能达到稳态。可采用准确调节流量的方法去实现节能,水泵以及冷却塔等平均节能达60%-80%。由于采取了特殊措施保障中央空调主机的高转换效率,机组 COP值始终处于最佳值,因此对于吸收式溴化锂机组可节约燃料20%-40%,对于电制冷主机可节电10%-30%。 动态变流量控制器具有强大的节能功能,在系统设计时就进行了系统集成,实现了各子系统的联动和互操作,达到了资源的共享的目的。由于自动功能非常强大,从而实现了无人值守管理和联网管理等,节省了人力、物力。这些都是通用变频控制系统无法实现的。4 在工程中应用的节能效果 动态变流量空调节能控制系统分别在贵州华城大酒店、贵州日报社、上海新锦江大酒店和成都国际会展中心等实际运行考核,验证了动态变流量空调节能控制系统的节 能效果。实践证明:变流量中央空调系统与定流量中央空调系统相比较,水泵以及冷却塔等平均节能达60%~80%;对于吸收式溴化锂机组可节约燃料20%- 40%;对于电制冷主机可节电10%-30%。基于动态变流量空调节能控制系统的节能效果,笔者在重庆市第二人民医院住院综合大楼(建筑面积29000m2,采用电制冷主机)和第三军医大学图书综合楼(建筑面积36000m2,采用吸收式溴化锂机组)设计中采用了动态变流量空调节能控制系统, 预计每项工程每年节约中央空调总运行费用达50-80万元。5 结束语 中央空调系统节能的潜力巨大,动态变流量空调节能控制系统给空调水系统的控制带来一场革命,同时,给空调系统节能带来前所未有的效果,具有广阔的应用前景,值得大力推广。参考文献 1 华东建筑设计研究院.《智能建筑设计技术》同济大学出版社,1996;306-313 2 李文然.《建筑电器智能技术》中国建材工业出版社,2001;1-5 3 郭维钧.贺智修.施鉴诺.《建筑智能化技术基础》2001;61—65
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。