人工智能的应用实例有哪些-人工智能的应用实例
1.机械领域的主要应用:1.1 机械设计 机械设计实际上是一个模型的综合和分析的过程,它不仅包括大量的计算、分析、绘图等数值计算型工作;还包括拟定初始方案,选择最优方案,制定合理结构等方案设计工作。 目前, 有些企业已引入CAD/CAM 系统, 由于CAD/CAM系统对符号推理工作需要综合运用多种科学的专门知识和丰富的实践经验才能解决,这需要CAD/CAM系统具有智能性,因此,设计智能化已成为机械设计中一个很热门的研究课题之一,它把计算机从数值处理扩展到非数值处理,包括知识与经验的集成、推理和决策,力图使机械设计过程自动化,减少人类专家在设计过程中由于个人因素造成的不足。此外,与传统设计方法相比,专家系统在机械设计中有着不可比拟的优势,它不仅可以长期稳定工作、节省成本,还可以为专家知识特别是启发式知识提供存储手段和传授途径、易于继承。1.2 机械制造 在机械生产制造过程中,需要为工厂中所有的装配机器供应零件。目标可能由监控者提供,也可能由系统对当时状态做出评估而产生。智能系统怎样推断出适当的目标,然后构造试图达到目标的动作序列,这个过程通常称为规划(planning), 它是自动问题求解的特例,是人工智能研究的重要子领域。 此外,计算机集成加工系统(CIMS)和柔性加工系统(FMS)在近年来获得迅速发展。在一个复杂的加工过程中,不同条件下的多种操作是必要的。环境的不确定性以及系统软硬件的复杂性,向当代工程师们设计和实现有效的集成控制系统提出了挑战。为了把现有的Petri 网技术用于现代加工系统,需要开发一种新技术,把机器智能技术和Petri 网理论以及智能离散事件控制器连接起来。1.3 机械电子工程 在许多工程系统中,往往由于内部结构复杂,存在着对加工过程控制及故障诊断等方面的困难,一般的PID 等典型控制方法虽然能解决一些问题,但在一些场合已不能满足生产的要求,当前,典型的机电一体化产品- 数控机床、交流伺服驱动装置等正在向数字化、小型化、高精度等方向发展,为监控带来新的挑战,由于模糊神经网络控制不依赖控制对象和数学模型,具有较强的鲁棒性,是一种非线性的控制方法,在解决此类问题中有很好的优势。而专家系统主要用于复杂的机械系统,能够克服基于模型的故障诊断方法对模型的过分依赖性。1.4 机械系统故障诊断 对机械设备进行故障诊断主要是通过对设备敏感部位的信号利用传感器进行数据采集和特征提取,根据不同机械部件在不同时间和状态下具有不同的特征,来判断是否工作正常。它包含两方面的内容,即对系统运行状态进行监测和发现异常情况后对故障进行分析、诊断。在系统运行过程中,若某一时刻系统发生故障,领域专家可以凭借视觉、听觉、嗅觉、触觉或测量设备得到一些客观数据,并根据对系统结构和系统故障历史的深刻了解很快做出判断,确定故障的原因和部位。对于较为复杂的系统,这种基于专家系统的故障诊断方法尤为有效。2 人工智能在机械系统中的应用方法 应用机械系统的AI 技术传统上可以分为专家系统(ES)、人工神经网络(ANN)、模糊集理论(FST)和启发式搜索(GA)四类。2.1 专家系统(Expert System .ES) 专家系统是人工智能的主要分支之一。一个典型的专家系统由四部分组成:知识库、推理机、知识获取机制和人机界面。专家系统按其知识表达方式不同,可分为基于规则和基于框架的专家系统;按其推理方式不同可分为正向推理和逆向推理。在知识表达方面,利用产生式规则进行知识表达,一方面得有益于现有人工智能语言,另一方面,它的表达合乎人的心理逻辑,便于进行知识获取,利于人们接受,利用框架进行知识表达得到了越来越多的应用。在诊断推理方面,主要表现在对推理逻辑和推理模型的研究,在人工智能领域,存在着许多推理逻辑,在专家系统中广泛使用模糊推理逻辑降低系统复杂性,在机械系统故障诊断上能产生很好的效果。专家系统技术的研究和应用正以前所未有的速度在故障诊断、模拟仿真、自动控制、工艺编程、生产规划、产品设计等许多机械工程领域不断发展。随着研究工作的不断深入,一些新的技术方法和先进制造技术正融入机械工程专家系统技术的研究和应用中,不仅使知识表示、知识库构建、知识获取和推理模式等关键技术的研究取得了一定成果,还出现了一些集成式的新型专家系统,如神经网络专家系统、模糊专家系统、基于Internet 的专家系统、CAD 专家系统、CAPP 专家系统等。他们综合利用了专家系统启发性、透明性、灵活性以及具有处理不确定知识能力的特点,使机械工程专家系统的应用领域不断拓宽。2.2 人工神经网络(artificial neural network. ANN) 人工神经网络是模拟的生物激励系统,将一系列输入通过神经网络产生输出。这里输出、输入都是标准化的量,输出是输入的非线性函数,其值可由连接各神经元的权重改变,以获得期望的输出值,即所谓的训练过程。基于数值计算方法的神经网络,将已有数据和已知系统模式作样本,通过学习获得两者的映射关系,实现了对人类经验思维的模拟。 由于神经网络具有原则上容错、结构拓扑鲁棒、联想、推测、记忆、自适应、自学习、并行和处理复杂模式的功能,使其在工程实际存在着大量的多故障、多过程、突发性故障、庞大复杂机器和系统的监测及诊断中发挥着较大作用。 在机械系统的应用方式有:从模式识别角度应用神经网络作为分类器进行故障诊断;从预测角度应用神经网络作为动态预测模型进行故障预测;利用神经网络极强的非线性动态跟踪能力进行基于结构映射的故障诊断;从知识处理角度建立基于神经网络的诊断专家系统等。目前,为提高神经网络在实用中的学习和诊断性能,主要从神经网络模型本身改进和模块化模型诊断策略两方面开展研究;同时,与模糊逻辑的结合研究也是一个研究热点。2.3 模糊集理论(Fuzzy Sets Theory. FSN) 人的认知世界包含大量的不确定之时,需要对所获信息进行一定的模糊化处理,以减少问题的复杂度。1965 年Zadeh 创立的模糊集理论是处理不确定性的一种很好的方法。模糊逻辑可认为是多值逻辑的扩展,能够完成传统数学方法难以做到的近似推理。目前基于多类电量测试信息模糊融合的模拟电路故障诊断方法已经提出。基于K故障节点诊断法和最小标准差法的元件故障隶属函数构造方法,以及基于可测点电压与不同测试频率下电路增益的模糊信息融合诊断算法也已阐述。分别利用此两类测试信息及K 故障诊断法和最小标准差法,对电路进行初步诊断,再运用模糊变换及故障定位规则, 得到融合的故障诊断结果。模拟实验结果表明,所提方法大大提高了机械系统故障定位的准确率。2.4 启发式搜索(Heuristic Search. HS) 遗传算法(Genetic Algorithms ,GA)和模拟退火(Simulated Annealing ,SA)算法是近年来逐渐兴起的两种启发式搜索,通过随机产生新的解并保留其中较好的结果,并避免陷入局部最小,以求得全局最优解或近似最优解。GA是由数字串的集合表示优化问题的解,通过遗传算子,即选择、杂交和变异的操作对数字串寻优。SA 在已知解的邻近区产生新的解,并逐渐缩小邻近区域的大小,直到逼近全局的最优解。两种方法都可以用来求解任意目标函数和约束的最优化问题。 在交流伺服系统中采用遗传算法的模糊神经网络控制较之传统的PID 控制方式具有响应速度快、误差小、无震荡、伺服性能强等优点,仿真结果表明,将遗传算法融入模糊神经网络控制器来控制交流伺服系统,其系统的响应超调量明显减少,具有较好的抗干扰性、伺服性。3 人工智能在机械系统中的发展趋势 人工智能中的四种主要工具, 即ES、ANN、FST 和GA,虽然在机械领域有不同程度的应用,但各自都存在一些局限:ES 存在知识获取的“瓶颈”、知识难以维护、应用面窄、诊断能力弱等问题。ANN 在外推时误差较大、系统结构变化时ANN 的组成结构也要变化、难以实现基于结构化知识的逻辑推理、缺乏解释能力等。FST 存在可维护性问题。GA 在依据的信息发生畸变时,难以保证可靠性等。 目前,缺少一种普遍有效的方法应用于机械系统的各个领域。混合智能,即综合多种智能技术用以设计、控制、监测机械系统成为新的发展趋势。结合的方式主要有基于规则的专家系统与神经网络相结合,CBR 与基于规则系统和神经网络的结合,模糊逻辑、神经网络与专家系统的结合等。其中模糊逻辑、神经网络与专家系统结合的诊断模型是最具发展前景的,也是目前人工智能领域的研究热点之一。混合智能在机械系统的应用中有如下发展趋势:由基于规则的系统到混合模型的系统,由领域专家提供知识到机器学习、由非实时诊断到实时诊断、由单一推理控制到混合推理控制策略等。4 人工智能在机械系统中的应用实例 智能技术在机械领域已经有了许多成功的应用。在工程中,典型的专家系统有帮助工程师发现结构分析问题的分析策略的SACON 系统;帮助识别和排除机车故障的DELTA 系统;帮助操作人员检测和处理核反应堆事故的REACTOR 系统。 在故障诊断方面,1967 年在美国航天局(NASA)倡导下,由美国海军研究室(ONR)主持美国机械故障预防小组(MFPG),积极从事故障诊断技术研究和开发。目前各种类型的故障诊断和维修专家系统已用于美国F- 15 战斗机、B- 1B 轰炸机、海军舰艇、陆军军械装置等现役装备的故障诊断和维修中。在我国,华中理工大学研制了用于汽轮机组工况监测和故障诊断的智能系统DEST;哈尔滨工业大学和上海发电设备成套设计研究所联合研制了汽轮发电机组故障诊断专家系统MMMD- ;清华大学研制了用于锅炉设备故障诊断的专家系统等等。 在电路和数字电子设备方面,MIT 研制用于模拟电路操作并演绎出故障可能原因的EI 系统;美国海军人工智能中心开发了用于诊断电子设备故障的IN- ATE 系统;波音航空公司研制了诊断微波模拟接口MSI 的IMA 系统;意大利米兰工业大学研制用于汽车启动器电路故障诊断的系统。 2006 年初,上海交通大学机电控制研究所、上海市农业机械研究所成功研制了适用于我国数字农业特点的两种主要智能型农业机械:中、小型收割机智能测产系统及其配套软件;智能变量施肥、播种机及其配套软件。虽然相关的应用实例还有很多,但它们大都处于实验室或小范围试验状态,限于成本、技术等问题,不能得到普及应用,这将成为智能技术在机械领域应用的“瓶颈”。引用: 人工智能在生活中应用的例子
在日常生活中,我们或许没有意识到,但其实人工智能已经无处不在。从智能手机的面部解锁到智能音箱的语音助手,再到网上购物时推荐系统的精准推荐,这些都是人工智能技术的应用实例。
我们得知道人工智能指的是让机器拥有类似人类智能的能力。简单来说,就是让机器能够学习、理解、规划、感知、推理并与环境互动。这些功能使得机器可以完成一些之前只有人类才能做的任务,比如识别语音和图像、处理自然语言等。
人工智能在我们生活中都应用在哪些地方呢?让我们一起看看。
在制造业中,AI技术的引入让生产线变得更加智能化,提高了生产效率和产品质量。而在家庭领域,结合物联网技术的智能家居让生活更加便捷。金融服务行业也利用AI进行风险评估、反欺诈等工作,提高了服务的安全性和效率。在医疗领域,AI辅助诊断、个性化治疗等应用正在帮助提高医疗服务水平。此外,自动驾驶技术的发展预示着未来出行方式的改变,而人脸识别技术则已广泛应用于安全监控与身份验证等场合。
当然,除了上面提到的应用,人工智能还在很多细分领域发挥着重要作用,比如AI对话、AI写作、AI绘画等等。这些应用不仅展示了AI技术的多样性,也让我们对未来充满了无限想象。
了解了人工智能及其应用场景后,你会发现这项技术其实并不像想象中那么遥不可及。它正以各种形式,悄悄改变着我们的生活方式。因此,对人工智能有一个基本的了解,不仅能消除对其的恐惧和误解,还能增加我们在这个科技时代的话题资本,提升个人的知识和科技感知力。
随着技术的不断发展,未来的人工智能将更加智能和普及,它将在更多领域发挥作用,帮助我们解决更多问题。因此,不妨拥抱这项技术,让它成为改善我们生活的工具。
人工智能专业最牛逼的美国大学有哪些
1、虚拟个人助理
Siri,GoogleNow和Cortana都是各种渠道(iOS,Android和WindowsMobile)上的智能数字个人助理。
总归,当你用你的声响提出要求时,他们会协助你找到有用的信息;你能够说“最近的我国饭馆在哪里?”,“今日我的日程安排是什么?”,“提醒我八点打电话给杰里”,帮手会经过查找信息,转播手机中的信息或发送指令给其他应用程序。
人工智能在这些应用程序中十分重要,由于他们搜集有关恳求的信息并运用该信息更好地辨认您的言语并为您供给适合您偏好的结果。
微软标明Cortana“不断了解它的用户”,而且终究会开展出猜测用户需求的能力。虚拟个人助理处理来自各种来历的许多数据以了解用户,并更有效地协助他们组织和跟踪他们的信息。
2、视频游戏
事实上,自从第一次电子游戏以来,视频游戏AI现已被运用了很长一段时间-人工智能的一个实例,大多数人可能都很熟悉。
可是AI的复杂性和有效性在曩昔几十年中呈指数级添加,导致视频游戏人物了解您的行为,呼应刺激并以不行预知的方法做出反应。2014年的中心地球:魔多之影关于每个非玩家人物的个性特征,他们对曩昔互动的回想以及他们的可变方针都特别有目共睹。
“孤岛惊魂”和“使命呼唤”等第一人称射击游戏或许多运用人工智能,敌人能够剖析其环境,找到可能有利于其生存的物体或举动;他们会采纳保护,查询声响,运用侧翼演习,并与其他AI进行沟通,以添加取胜的时机。
就AI而言,视频游戏有点简略,但由于职业巨大的商场,每年都在投入许多精力和资金来完善这种类型的AI。
3、在线客服
现在,许多网站都提供用户与客服在线聊天的窗口,但其实并不是每个网站都有一个真人提供实时服务。在很多情况下,和你对话的仅仅只是一个初级AI。大多聊天机器人无异于自动应答器,但是其中一些能够从网站里学习知识,在用户有需求时将其呈现在用户面前。
最有趣也最困难的是,这些聊天机器人必须擅于理解自然语言。显然,与人沟通的方式和与电脑沟通的方式截然不同。所以这项技术十分依赖自然语言处理(NLP)技术,一旦这些机器人能够理解不同的语言表达方式中所包含的实际目的,那么很大程度上就可以用于代替人工服务。
4、购买预测
如果京东、天猫和亚马逊这样的大型零售商能够提前预见到客户的需求,那么收入一定有大幅度的增加。亚马逊目前正在研究这样一个的预期运输项目:在你下单之前就将商品运到送货车上,这样当你下单的时候甚至可以在几分钟内收到商品。
毫无疑问这项技术需要人工智能来参与,需要对每一位用户的地址、购买偏好、愿望清单等等数据进行深层次的分析之后才能够得出可靠性较高的结果。
虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折计划、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。
这种人工智能应用颇具争议性,毕竟使用预测分析存在隐私违规的嫌疑,许多人对此颇感忧虑。
5、音乐和**推荐服务
与其他人工智能系统相比,这种服务比较简单。但是,这项技术会大幅度提高生活品质的改善。如果你用过网易云音乐这款产品,一定会惊叹于私人FM和每日音乐推荐与你喜欢的歌曲的契合度。
从前,想要听点好听的新歌很难,要么是从喜欢的歌手里找,要么是从朋友的歌单里去淘,但是往往未必有效。喜欢一个人的一首歌不代表喜欢这个人的所有歌,另外有的时候我们自己也不知道为什么会喜欢一首歌、讨厌一首歌。
而在有人工智能的介入之后,这一问题就有了解决办法。也许你自己不知道到底喜欢包含哪些元素的歌曲,但是人工智能通过分析你喜欢的音乐可以找到其中的共性,并且可以从庞大的歌曲库中筛选出来你所喜欢的部分,这比最资深的音乐人都要强大。
**推荐也是相同的原理,对你过去喜欢的影片了解越多,就越了解你的偏好,从而推荐出你真正喜欢的**。
扩展资料人工智能应用领域
机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。
中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的。
另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口,而长虹正成为将这一浪潮掀起的首个家电巨头。
长虹发布两款CHiQ智能电视新品,主打手机遥控器、带走看、随时看、分类看功能 。
参考资料?百度百科-人工智能
人工智能时代正在朝我们的生活走来,很多大学开设了AI专业,那么美国有哪些AI专业比较好的大学呢?这是很多学生比较感兴趣的问题。和一起来看看吧!下面是我整理的相关资讯,欢迎阅读。
人工智能专业最牛逼的美国大学有哪些
人工智能到底是什么?
人工智能---AI(Artificial Intelligence),它是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。该概念第一次在达茅斯顿学术会议上提出:人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学(ps:注意包括2个部分:模拟人类以及延伸人类智能)。
人工智能的应用实例:指纹识别、人脸识别 、视网膜识别、 虹膜识别 、专家系统 、智能搜索、 博弈等
人工智能的部分应用领域
1) 机器人领域:人工智能机器人,如PET聊天机器人,它能理解人的语言,用人类语言进行对话,并能够用特定传感器采集分析出现的情况调整自己的动作来达到特定的目的。
2) 语言识别领域:该领域其实与机器人领域有交叉,设计的应用是把语言和[i]声音转换成可进行处理的信息:如语音开锁(特定语音识别);语音邮件以及未来的计算机输入等方面
3) 图像识别领域:利用计算机进行图像处理、分析和理解,以识别各种不同模式的目标和对象的技术;例如人脸识别 汽车牌号识别等。
4) 专家系统:具有专门知识和经验的计算机智能程序系统,后台采用的数据库相当于人脑,具有丰富的知识储备 采用数据库中的知识数据和知识推理技术来模拟专家解决复杂问题。
一个十分直观的综合应用的实例:google的无人驾驶汽车,该项目是由斯坦福人工智能实验室主任塞巴领导谷歌一个团队承担的。
人工智能已经智能到什么程度了?
在最近的几十年里,人工智能似乎开始呈现出井喷式发展。1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV),人工智能的这个完美表现开始引起了所有研究者的注意。在最近五十年里,从手机上的计算器到无人驾驶汽车,再到今天 Master 59连胜人类顶尖围棋选手,再到未来可能改变世界的重大变革,人类似乎在慢慢预测到——一个人工智能的时代正在来临。
例如:WaveNet模仿人类语音
去年9月,谷歌发布了一项名为WaveNet的文本转语音(Text-to-Speech)技术。通常我们听到的计算机输出音频都很别扭,但WaveNet则能输出更自然的声音。当你和Siri对话,你还会觉得别扭,因为你能听出Siri是机器。但是有了WaveNet,或许,让人类和机器实现真正的交流,很快就不是梦想。
如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科。
不管你选择什么专业方向,人工智能和机器人专业的主要课程包括数学、计算机课程,基本的编程语言、算法设计、操作系统、数据结构、逻辑、概率论和数理统计等方法。
人工智能专业的分支情况
接下来,我们来看看这个AI这个综合型学科的一个专业分支,总的来说可以分为以下几个分支:第一,模式识别;第二,机器学习;第三,数据挖掘;第四,智能算法 。
模式识别:是指对表征事物或者现象的各种形式(数值的文字的逻辑关系的等)信息进行处理分析,以及对事物或现象进行描述分析分类解释的过程,例如汽车车牌号的辨识 涉及到图像处理分析等技术。
机器学习:研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构是指不断完善自身的性能,或者达到操作者的特定要求。
数据挖掘:知识库的知识发现,通过算法搜索挖掘出有用的信息,应用于市场分析、科学探索、疾病预测等。
智能算法:解决某类问题的一些特定模式算法;例如,我们最熟悉的最短路径问题,以及工程预算问题等。
在国外高校都有其偏重,了解各个分支能够很好地指导选择自己感兴趣的方向,在申请学校的时候也可以做到有的放矢。
AI的就业导向以及申请学校前的实习导向参考
关于AI在美国的就业方向主要有,科研机构(机器人研究所等),软硬件开发人员,高校讲师等。当然了,鉴于一些高科技公司开辟出了新的研究领域,比如谷歌的无人驾驶汽车...在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点正好都是3-5年后的时间,正好是同学们学成归来的时候!
就业方公司和会议方向参考
1) 搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、搜索、视频搜索等都是未来的方向)
2) 医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。
3) 计算机视觉和模式识别方向: 前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;
4) 还有一些图像处理方面的人才需求的公司如威盛、松下、索尼、三星等。
鉴于AI方向的人才都是高科技型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。
人工智能最牛的20所美国大学:
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。